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The Joint Measurement Problem 

Jos Uf l ink ~ 

Received July 22, 1993 

According to orthodox quantum theory, the joint measurement of noncommut- 
ing observables is impossible. It has been claimed recently that such joint 
measurements are admitted in a generalized formalism for quantum theory 
developed by Ludwig and Davies, by means of so-called 'unsharp observables.' 
It is argued in this paper that this claim has not been substantiated. 

1. I N T R O D U C T I O N  

Is it possible to measure both the position and the momentum of  a 
particle? And if not, is it perhaps still possible to measure such quantities 
inaccurately? Questions like these form instances of  what I shall call the 
'joint measurement problem. '  The received view on this problem is that 
quantum theory excludes the joint measurement of  position and momen-  
tum. In fact, it is also denied that it is possible to attribute exact values of  
position and momentum to a particle as coexisting properties. However, 
the debate on this issue is still far from being settled. 

One of  the main reasons why this conclusion from quantum theory 
seems puzzling is the apparent  fact that on a macroscopic scale one can 
obtain knowledge about  the position and momentum of a particle simulta- 
neously. It  is often said that when the momentum of  a particle is measured, 
we know at least that the particle is in the laboratory. Obviously, some 
argument  is needed to reconcile this conflict between what is theoretically 
impossible and what yet appears to be done in the laboratory. The usual 
argument  runs as follows. Real experiments are always accurate in some 
sense. Thus they should be described as measurements of  a quantity involv- 
ing a finite inaccuracy. Now, although simultaneous exac t  measurements 
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of position and momentum are impossible, an inaccurate measurement of 
both quantities may still be possible. A limit on the inaccuracies of such a 
measurement is given by the well-known uncertainty relation ApAq > �89 
The conflict with actual experiment is then overcome by pointing out that 
h is so small that the restrictions quantum theory places on such simulta- 
neous measurements can be neglected on the macroscopic scale. 

A weakness of this argument is that the uncertainty relation, in its 
usual formulation, refers to the expected spread (root-mean-square fluctua- 
tions) in separate (exact) measurements of position and momentum, respec- 
tively. These do not represent the inaccuracy of the measurements, nor do 
they refer to joint measurements. In fact, the formalism of quantum theory, 
as it is presented by von Neumann, simply has no room for a description 
of a joint measurement of position and momentum at all. 

In the last two decades a new approach to this problem has been 
proposed by a great number of authors, in particular by Prugovecki, 
Holevo, Busch, Lahti and Schroeck, and Martens and De Muynck. The 
starting point of these authors is a generalized formalism of quantum 
theory, developed by Ludwig (1976) and Davies (1976). It is claimed that 
within this generalized formalism noncommuting quantities like position 
and momentum can be jointly measured, if a certain provision is made with 
respect to the sharpness or accuracy of these measurements. Thus, one 
speaks of 'unsharp' or 'inaccurate' measurements, or measurements of 
'unsharp' (or 'fuzzy,' 'stochastic,' 'approximate,' etc.) quantities. It is the 
purpose of the present article to review this approach and examine its 
relevance to the joint measurement problem. 

We shall find that the formalism of Ludwig and Davies does not yield 
new conclusions for this problem. In fact, we conclude that the claim that 
within this formalism a joint unsharp measurement of position and mo- 
mentum or a pair of spin components is possible is false. We shall argue 
that these claims rest on the adoption of inappropriate definitions, i.e., 
definitions that trivialize the problem. 

2. JOINT MEASUREMENTS IN THE ORTHODOX FORMALISM 

We review the basic aspects of the orthodox formalism of von Neu- 
mann as far as it is relevant for joint measurements. It is postulated in this 
formalism that every observable quantity is represented by a self-adjoint 
operator on a Hilbert space ~ .  By virtue of the spectral theorem, every 
self-adjoint operator A has a unique spectral decomposition 

A = Z a;A; (1) 
i 



The Joint Measurement Problem 201 

where a~ denote its distinct eigenvalues and At its eigenprojections. (For  
simplicity, it is assumed that A has a finite spectrum. The projections At 
may be multidimensional.) The eigenprojections (Al . . . .  , An} satisfy 

Ai = n, AiA~ = 6~Ai (2) 
i 

where ~ is the unit operator on oeg. We call a collection of  projections 
obeying (2) a spectral resolution. Further, it is postulated that the probabil- 
ity of  finding the value ai when A is measured on a system in state p is 
Probp (ai) = Tr pAt. 

An alternative approach would be, in Mackey's words, to ' turn the 
spectral theorem on its head.' That is, one may also start from the 
postulate that every observable is represented by a mapping 

d :  at ~A~ 

from a set XA= { a ~ , . . . ,  a ,} to a spectral resolution and invoke the 
spectral theorem to show that these mappings are in one-to-one correspon- 
dence with self-adjoint operators. These two approaches are equivalent in 
the present case. But, as we shall see, they are not equally easy to 
generalize. 

The notion of joint measurements can be introduced formally as 
follows: 

Definition I. Two observables A, B are jointly measurable if there is a 
third observable C of  which they are both functions, i.e, if A = f ( C )  and 
B = g(C). 

We also say that a measurement of any C with the above properties is 
in fact a joint measurement of  A and B. The motivation for this definition 
is that in this case A and B can be seen as coarse-grained versions of C. If  
we measure the observable C, we can assign values to A and B simply by 
applying the functions f and g to the outcome c. Note that the above 
definition of  joint measurement is not peculiar to quantum theory. It is a 
useful criterion also in a general class of  physical theories including 
classical physics (Varadarajan, 1962). 

I f  we think of observables as spectral mappings we can reformulate the 
definition as the following criterion: two observables d ,  ~ are jointly 
measurable if there is a third Observable ~,  with spectral resolution 
{C1 . . . . .  Cm ), such that 

At= 2 ck, Bt= y ck 
keKi k~Kj 
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where {K~} and {Kj} denote two partitions of the index set {1 . . . . .  m}. 
That the definition entails the criterion can be seen by writing 

Ki = {kla, =f(ck)},  K~ = {klb j =g(ck)} (4) 

Conversely, for any given partitions of {1 . . . .  , m} one can always find 
functions f and g such that (4) holds. The general definition of commutativ- 
ity is: 

Definition 2. Two observables d ,  ~ commute iff Yi, j :  A~Bj = BiAs. 

With these definitions one obtains the well-known theorem: 

Theorem L Two observables are jointly measurable iff they commute. 

Joint measurements as defined here are often called simultaneous 
measurements. But there is no reason to assume that a joint measurement 
consists of two measurements performed simultaneously, i.e., at the same 
instance of time. In order to avoid connotations with simultaneity, Ludwig 
proposed the term 'coexistent' for jointly measurable observables. How- 
ever, this term has other unwanted connotations. In ordinary language the 
statement "A and B are coexistent" is equivalent to: "both A and B are 
existent.'" So, if A and B are coexistent and B and C are also coexistent, it 
is hard to refrain from the belief that A and C must also be coexistent. 
However, in quantum theory comeasurability is not a transitive relation 
and the conclusion would be false in general. We therefore prefer to use the 
term 'jointly measurable.' 

3. JOINT MEASUREMENTS IN THE GENERALIZED FORMALISM 

The most important distinction between the formalism of Ludwig and 
Davies and the orthodox formalism is that the notion of a spectral 
resolution is replaced by the notion of a so-called semispectral resolution. 
Restricting ourselves again to the finite case, a semispectral resolution is 
defined as a collection of  positive operators (also called effects) 
{~11 . . . .  , Mn } on g such that 

M, 0, EM,=u (s) 
t 

It is now postulated that an observable is represented by a mapping 
.g :  m,. ~ M i  from a spectrum X ~, which represents the set of possible 
values, to a semispectral resolution. Also, it is postulated that the probabil- 
ity of obtaining the value me in a measurement of the observable J / o n  a 
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system prepared in the state p is given by 

Prob(mi) = Tr pMi 

Obviously, one has Tr pMi >-0 and ~i Tr pMi = 1. Thus, the formalism 
provides a consistent generalization of the orthodox formalism. The latter 
is recovered as the special case in which the operators Mi are orthogonal 
projection operators. An important difference from the orthodox formalism 
is, however, that there is no analogous 'semispectral theorem' that would 
enable us to characterize an observable uniquely by a self-adjoint operator 
(Grabowski, 1989). Thus the two ways of introducing the notion of an 
observable of the previous section are no longer equivalent here. 

Before considering this formalism in more detail, it is worthwhile 
giving some examples of semispectral resolutions in order to see what kind 
of new observables this formalism allows. 

Examples 
1. On any Hilbert space, the set {�89189 constitutes a semispectral 

resolution. A measurement of this observable is realized by ignoring the 
system altogether and tossing a fair coin. 

2. Let o~ =c  g2 be the Hilbert space of a spin-l/2 particle. Let 
n ~  . . . . .  am be unit vectors in R 3 such that Ei  ni = 0, and P; = �89 + n;- ~) 
be the projectors for spin up in direction n~. Then 

e l , . . . ,  m 

forms a semispectral resolution (Holevo, 1982). 
3. On ~f2, let P+, P_ be the eigenprojections of spin in the z direction. 

Then 

{(1 - -  e)P+ + 6P_, EP+ + (1 -- 6)P_ } 

forms a semispectral resolution. One can think of this as the representation 
of a measurement of spin in the z direction where sometimes (with 
probability E) a 'spin-up' result is registered as 'down' and particles with 
spin-down are sometimes (probability 6) registered as 'up' (Busch and 
Schroeck, 1989). 

From these examples we see that the operators Mg which constitute a 
semispectral resolution need not be projectors, nor need they commute with 
each other (Example 2). Also, the number of its elements is not bounded by 
the dimension of gg. 

We define the notions of joint measurements and commutativity in 
analogy with the orthodox formalism: 
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Definition 3. Two observables de, ~C are jointly measureable iff there 
is a third observable (9 such that 

M,= E = E 
k ~ K  i kEKj  

Definition 4. Two observables ~ ,  X commute iff Vi, j: MINi = NjMi. 

Let us now reconsider the joint measurement problem. We first discuss 
the observables of  the orthodox formalism which, as we have seen, are 
imbedded in the new formalism. We call these the 'orthodox observables.' 
Let z~r ~ be orthodox observables and suppose that they were not jointly 
measurable in the orthodox formalism. Is this true also in the new 
formalism? The answer is not a priori obvious. Whether observables are 
jointly measurable depends on how many observable quantities are admit- 
ted by the theory. And since the new formalism is more liberal than the 
orthodox formalism, it is possible in principle that d and ~ do become 
jointly measurable in the new theory. However, it can be shown (Ludwig, 
1976; Davies, 1976): 

Theorem 2. A pair of orthodox observables is jointly measurable iff 
they commute. 

Thus we recover the same result as in yon Neumann's formalism. Our 
only possibility for new results therefore lies in a consideration of unortho- 
dox observables, i.e., observables associated with semispectral resolutions. 
Then one can show: 

Theorem 3. Commutativity of observables is a sufficient but not 
necessary condition for joint measurability. 

The proof of this theorem is so simple that we reproduce it. 

Proof. If  ~/r commutes with X ,  the mapping (9: (i, j)---} O 0. = MiNi 
defines an observable whose measurement provides a joint measurement of 
~ / / and  X .  That the condition of commutativity is not necessary follows 
from the fact that any ~ /  is jointly measurable with itself, but need not 
commute with itself. 

Thus, unorthodox observables can be jointly measurable, even if they 
do not commute. At first sight, this looks like an exciting new result. But 
since the proof is so simple, it is not clear whether something significant is 
at stake. In any case, in order to judge the relevance of the fact that 
noncommuting unorthodox observables can be jointly measurable we 
should consider in more detail what is the meaning of these unorthodox 
observables. 
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4. U N S H A R P  O B S E R V A B L E S  

We have seen that the Ludwig-Davies formalism is more liberal than 
the orthodox formalism of von Neumann. It allows the measurement of 
what we have called 'unorthodox observables.' But we have not yet 
discussed the interpretation of the unorthodox observables. One would 
naturally like to know what is being measured in a measurement of an 
unorthodox observable. Here we discuss some possible answers to this 
question. 

The first option is to think of unorthodox observables as correspond- 
ing to new physically meaningful quantities not recognized by von Neu- 
mann's formalism. In some cases specific interpretations for interesting new 
quantities have been proposed. Examples are L6vy-Leblond's (1976) pro- 
posal for an observable representing the phase of a harmonic oscillator, or 
Holevo's (1982) proposal for a time observable. Both instances are notori- 
ously problematic from an orthodox viewpoint. However, it is not clear 
how one should proceed in general. 

Of course one can argue that this question is to be decided in the 
context of concrete applications, or by extratheoretical considerations, just 
as the analogous question in the orthodox formalism (which physical 
quantity is represented by which self-adjoint operator?) is likewise not 
decided by the formalism itself. This is a legitimate argument, but not very 
helpful in our case. As we have seen in the previous section, the formalism 
gives the 'old' answer to the 'old' joint measurement problem. It only gives 
a new answer to a new problem, viz. the joint measurement of unorthodox 
observables. Unless we are able to say more about the meaning of these 
new observables, or about how they are related to the orthodox observ- 
ables, we have gained no new insight in the problem with which we started. 

A next proposal consists of  introducing a preordering relation between 
observables having the purported meaning that one observable is an 
'unsharp,' 'fuzzy,' 'stochastic,' or 'inaccurate' version of another. This 
relation was introduced and studied by She and Heffner (1966), Ali and 
Emch (1974), Prugovecki (1976), Busch (1985), and others. The following 
definition is essentially due to Martens and De Muynck (1990a): 

Definition 5. The observable s/f is called an unsharp version of sir iff 
N >-M, where >- is defined as follows: 

(a) X ~ J/# iff there is a stochastic matrix (Ak~) (i.e., a matrix with 
~ki -> 0 and ~k 2k~. = 1) such that 

Mk ---- ~ ~k~N~ (6) 
i 

(b) sV" ~- J / / i f f  sV" ~ J / a n d  ./4 ~ JV'. 
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We also say in this case that a measurement of J// is an unsharp 
measurement of JV. The motivation for this definition can easily be 
explained. Suppose a measurement procedure is conducted as follows. 
Actually, a measurement of JV is performed and a result n,. is obtained, but 
due to internal noise in the detector or some other random process, this 
result is not properly registered as the outcome of the experiment. Instead, 
whenever the result n~ has been obtained, the outcome mk is recorded with 
conditional probability p(m k [ni) = 2kg. In this situation, for any state p, the 
probability of recording the value mk is given by 

Probp(mk) = ~ 2ki Probp(ni) = ~ 2ki Tr pN~ = Tr pMk 
i i 

Hence, this procedure is (equivalent to) a measurement of the observable 
d / .  

Now, of course, the suggested interpretation is by no means unique, 
and indeed, the multitude of  names by which the relation of Definition 5 is 
known reflects the divergent interpretational tastes of the authors who have 
contributed to this subject. It is not necessary, however, to discuss this issue 
in the context of this paper, because the mathematical formulation of 
Definition 5 is indifferent to this aspect of the problem of interpretation. 
(Although some would perhaps allow 2k; t o  depend on the state of  the 
system or other circumstances.) 

Definition 5 gives a natural articulation of the idea of a noisy or 
inaccurate measurement. The important point here is that in spite of this 
noise, a measurement of ~ generally yields useful information about X .  
When a value m~ is obtained, one can make a statistical inference about the 
values of JV, in the manner of estimation theory, confidence intervals, or 
some other statistical technique (Busch and Schroeck, 1989). Thus, measur- 
ing J / g i v e s  'partial information' about ~/'. 

For orthodox observables one has ~r ~ - ~  iff B = f (A)  when f is a 
nonbijective function. Thus the relation ">-"  generalizes the notion of  one 
observable being a function of another. It reduces to the latter notion when 
the stochastic matrix 2 contains only zeros and ones. Also note that one 
observable ~ '  may be an unsharp version of several observables JI r, ~ . . . .  
which need not be jointly measurable. 

Of particular interest are those observables which are not unsharp 
versions of other observables. These are the analogs of the maximal 
observables in von Neumann's formalism, and it seems appropriate to call 
them the 'sharp' observables. It is found (Martens and De Muynck, 
1990a,b) that an observable is sharp iff its semispectral resolution is of the 
form { c q P l , . . . ,  O~nP n }, where Pi denote one-dimensional projectors (not 
necessarily commuting!) and 0 < st < 1. All orthodox maximal observables 
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are sharp in this sense. Example 2 above shows that there are also sharp 
unorthodox observables. 

It should be mentioned that there are also two other definitions of 
'unsharpness' current in the literature which are quite different from 
Definition 5. One proposal is to go back to the orthodox idea that the 
physically meaningful quantities are represented by self-adjoint operators 
and use a semispectral decomposition 

A = ~ miM i (7) 
i 

to link them with unorthodox observables. In this option one regards an 
observable ~# as an unsharp version of  an orthodox observable d in case 
(7) holds (Ali and Doebner, 1976; Holevo, 1982; Schroeck, 1985, 1989). 
Grabowski (1989) has conjectured that the two definitions are equivalent 
(in the case when they are both applicable, i.e, when JV in Definition 5 is 
orthodox). This conjecture, however, is false? 

The present proposal faces some ,problems. There are semispectral 
resolutions that decompose an), self-adjoint operator on a given Hilbert 
space (by choosing the values mi appropriately.) This would mean that one 
can measure a l l  observables of a system in a single experiment, merely by 
relabeling the outcomes. This would, indeed, offer a radical new solution to 
the joint measurement problem. But is it acceptable? 

Let us consider an example. Take a spin-i/2 particle and a random 
device with three equally likely possible outcomes (say a common die with 
outcomes {1, 2}, {3, 4}, {5, 6}). Throw the die and decide, depending on the 
result of this throw, to measure either or a~. The semispectral 
decomposition for this procedure is {�89 a ~ , p  a y  1 , 3~ x - ,  g P y + ,  . . . , � 8 9  } ,  where 
{.~+, P~_ } are the spectral resolutions of  a~. Suppose this procedure is 
performed and we obtain the outcome k = 1. That is, the die gave the result 
1 or 2, we measured O'x, and obtained spin up. Is this justification enough 
to say that we have measured all observables of the system? That would 
seem preposterous. 

Another motivation for regarding the above procedure as a measure- 
ment of  all observables is, perhaps, that it is 'informationally complete.' 
This means that from the measurement statistics one can estimate the 
precise form of p. In our example this arises because, when the procedure 
is repeated, one will eventually also measure o'y and a z .  Thus the 'complete 
information' is obtained only in a s e q u e n c e  of measurements on the same 
state p. But that is not really a joint measurement. The same information 

ZEvery observable ~r with ~ '  >- J f  ( d  orthodox) commutes with itself. This is not the case for 
every semispectral resolution of A, 
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is obtained (and actually more efficiently) if the die throw is deleted from 
the procedure and one decides right away to perform a sequence of orthodox 
ax, try, and oz measurements. 

Yet another definition of unsharpness if proposed by Busch (1985a, b, 
1987a) and Busch and Schroeck (1989). Here, an observable is said to be 
unsharp if its range contains an operator Mk such that for some state p one 
has Tr pMk > 1/2 and for some other state p'  one has Tr p'Mk < 1/2. This 
definition differs from both of the previous proposals. For example, in 
contrast to those proposals, one should now say that all orthodox observ- 
ables are unsharp, while {10, l~} is not. But the foremost difference seems 
to be that here the term 'unsharp' is treated as a quality of observables 
("observable M/ is unsharp") and not as a relationship between them 
("observable ~ '  is an unsharp version of d " ) .  In view of this, the present 
proposal does not seem helpful for the inte_rpretation of unorthodox 
observables. Our problem is not which observables are to be called unsharp, 
but rather what they stand for, i.e., what is being unsharp. 

Studying this last question, one finds that certain unorthodox observ- 
ables are identified with 'unsharp momentum,' etc. (Busch, 1985a,b, 
1987a,b; Busch and Schroeck, 1989). But this makes sense only if one 
assumes some particular relationship between these observables and the 
orthodox momentum, spin, etc., observables. It seems that in all cases this 
relationship is of the form (6). This, in effect, leads us back to Definition 
5. To summarize, there are three different ways in which a notion of 
unsharpness is introduced in the literature, only one of which (Definition 5) 
seems useful. 

Let us now come back to the joint measurement problem. We have seen 
in the previous section that the generalized formalism leads to new conclu- 
sions with respect to the joint measurement problem for unorthodox 
observables only. We have now seen (by Definition 5) how certain unortho- 
dox observables can be interpreted as unsharp versions of orthodox 
observables. So the question arises whether noncommuting orthodox ob- 
servables become jointly measurable if we replace them by unsharp versions. 
Consider the following definition (Martens, 1991). 

Definition 6. An observable (9 is said to be a joint unsharp version of 
sr and ~ if there exist observables M and N such that 

M ; =  E Ok, N j =  E Ok (8) 
kEK i kcKj  

and 

A ~-M, B ) - N  (9) 

In this ease we also say that a measurement of (9 is a joint unsharp 
measurement of d and ~.  
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Before we discuss this definition further, we give an example: joint 
unsharp position and momentum (skipping the mathematical details con- 
cerning the continuous spectrum of position and momentum). 

Example 4. Let ~vf = L#2(R), [X)eM', be any state vector and define 
!Xpq) =ei(qe-PQ)lX), where P and O are the orthodox momentum and 
position operators, and p and q are real numbers. Then the operators 

O(p, q) = (2re) -lIZpq ><~pq I 
define a bivariate continuous analog of a semispectral resolution. That is, 
we have 

O(p, q) > O, .f.f O(p, q) dp dq = 1 

The mapping (9: (p, q) ~ O(p, q) is a joint unsharp version of position and 
momentum according to Definition 6. Indeed the marginals of O(p, q) 

; ' f M(p) = O(p, q) dq, N(q) = O(p, q) dp (10) 

are the continuous coarse-grained resolutions analogous to (8). At the 
same time 

M(p) = !l(z~'-PSI2~'5(P'ldp', N(q) = il(zlq'-q)Hq')(q'ldq" 
(11) 

are smoothened versions of the ordinary momentum and position resolu- 
tions, analogous to (9). Here I (%~ ' -p )12=  2(p,p') and [(zIq'-q)12 = 
#(q, q') replace the stochastic matrices in (6). The joint probability density 
Tr pO(p, q) is called the 'smoothened' Wigner distribution, the 'stochastic 
phase space' representation, or Husimi representation of p (She and 
Heffner, 1966; Prugovecki, 1984; Busch, 1985a, 1987b; All, 1985; Braun- 
stein et al., 1991). 

In general, the motivation behind Definition 6 may be put as follows. 
If there are observables ~g, Y obeying (9), these are unsharp versions of 

and ~ ,  according to Definition 5. Thus, a measurement of Jr  gives some 
'unsharp information' about ~r and likewise for Jt: and ~.  Moreover, (8) 
states that ~ and d are jointly measurable through (9. Hence, if we 
measure (9, we realize an unsharp measurement of d as well as of ~ .  

This argument may appear tempting, but it is incorrect. The conclu- 
sion that a measurement of (9 is an unsharp measurement of ~ and 
would mean, according to our previous definitions, that ~r >- (9 and ~ >- (9. 
But clearly, neither of these relations is implied by the above definition. 
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The pitfall in the above argument is that joint measurability is not a 
transitive relationship. This becomes perhaps more transparent if we first 
note that Definition 6 can also be implemented in the orthodox formalism. 
That is, one can take all the observables mentioned in this definition to be 
orthodox. For example, consider a particle with spin and one spatial degree 
of freedom and let 

= (ax, Q) (9 = (ax, P) ~ = (ay, P) 
\/ \/ 

J [  = a x  d/" = P  

where arrows represent the preordering _>-. 
Now, an experimenter measuring d / ( s p i n  in the x direction) might 

say, " I f  only I had used a more accurate instrument, I could have measured 
~r (spin and Position)." This counterfactual belief will not lead to 
difficulties, just because ~g and d are jointly measurable (or 'coexistent'). 
In a similar way the experimenter is entitled to say, " I f  I had used another, 
more accurate instrument, measuring (9, I could have obtained the values 
of  spin J /  as well as momentum .hr." But ~r and (9 are not jointly 
measurable. Hence if the experimenter actually sets up an instrument to 
measure (9, he or she is no longer justified in believing that he or she could 
still also have measured d without sacrifice of  the actual results, let alone 
in saying that he or she has in fact measured ~r inaccurately. A similar 
argument holds for ~ .  

Thus, the above definition does not guarantee that a measurement of 
(9 is an unsharp measurement of either ~r or ~ .  In fact, (9 need not even 
be jointly measurable with ~r or ~ .  To call such observables a joint 
unsharp version of  d or ~ is to use the term 'joint' in such a way that can 
no longer be equated with 'jointly' or 'both.' The danger of  this pitfall is 
illustrated by the fact that some authors (Busch, 1987a; Martens, 1991), 
apply the above definition to discuss the question of  whether in an 
interference experiment one can observe both the path of a particle and the 
interference phenomenon. 

Furthermore, note that by Definition 6 the measurement of  any 
observable whatsoever is a joint unsharp measurement of  an arbitrary pair 
of observables (e.g., take the range of vg, ~/" equal to {fl}. Thus Definition 
6 has no counterexamples. This conclusion can of course be blocked by 
adding further restrictions to Definitions 5 and 6. For  example, some 
authors demand that the stochastic matrix in Definition 5 is symmetrical. 
Under such constraints the notion of joint unsharp measurements becomes 
nontrivial, but the constraints themselves are somewhat ad hoe. However 
this may be, it is the first point raised here which to me seems to be the 
most serious objection to Definition 6. It seems inappropriate to define 
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jo int  unsharp  measurements  in such a way that  a ' jo int  unsharp  measure-  
men t  of  d and ~ '  is different f rom a procedure  in which bo th  d and  
are measured  unsharply.  

Let  me end with a remark .  The  above  criticism o f  Definit ion 5 should 
not  be cons t rued  as meaning  tha t  the 's tochast ic  phase-space '  or  ' coherent-  
s tate '  observable  o f  Example  4 is trivial or  useless. Rather ,  it means  tha t  its 
interest lies elsewhere. Const ruc t ions  like Example  4 are today  often used 
in q u a n t u m  optics (K laude r  and  Skagers tam,  1985). In  these appl icat ions 
the 'pos i t ion '  and ' m o m e n t u m '  opera tors  are actually the real and  imagi-  
na ry  par ts  o f  the quant ized field ampl i tude  ( o f  a single mode) .  This  
suggests tha t  it m a y  be more  fruitful to interpret  this observable  not  as a 
' joint  unsha rp  posi t ion and  m o m e n t u m , '  but  as a (sharp!)  observable  
represent ing the complex-field ampli tude.  
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